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Abstract. In this paper, we study the third-order functional dynamic equations with
γ-Laplacian and nonlinearities given by Riemann–Stieltjes integrals{

r2 (t) φγ2

([
r1 (t) φγ1

(
x∆ (t)

)]∆
)}∆

+
∫ b

a
q (t, s) φα(s) (x(g (t, s))) dζ (s) = 0,

on an above-unbounded time scale T, where φγ(u) := |u|γ−1 u and
∫ b

a f (s) dζ (s) de-
notes the Riemann–Stieltjes integral of the function f on [a, b] with respect to ζ. Results
are obtained for the asymptotic and oscillatory behavior of the solutions. This work
extends and improves some known results in the literature on third order nonlinear
dynamic equations.
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time scales.

2010 Mathematics Subject Classification: 34K11, 39A10, 39A99.

1 Introduction

We are concerned with the asymptotic and oscillatory behavior of the third order nonlinear
functional dynamic equation{

r2(t)φγ2

([
r1(t)φγ1

(
x∆(t)

)]∆
)}∆

+
∫ b

a
q(t, s)φα(s) (x(g(t, s))) dζ(s) = 0 (1.1)

on an above-unbounded time scale T, where φγ(u) := |u|γ−1 u, γ1, γ2 > 0; α ∈ C[a, b] with
−∞ < a < b < ∞ such that α(s) > 0 is strictly increasing, ri, i = 1, 2, are positive rd-
continuous functions on T; q is a positive rd-continuous function on T× [a, b]; and g : T×
BCorresponding author. Email: tshassan@mans.edu.eg
∗This author is supported by the NNSF of China (No. 11271379).
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[a, b] → T is a rd-continuous function such that limt→∞ g(t, s) = ∞ for s ∈ [a, b]. Without
loss of generality we assume 0 ∈ T. Hence we may discuss the solutions of Eq. (1.1) on
[0, ∞)T. Here

∫ b
a f (s) dζ(s) denotes the Riemann–Stieltjes integral of the function f on [a, b]

with respect to ζ. We note that as special cases, the integral term in the equation becomes a
finite sum when ζ(s) is a step function and a Riemann integral when ζ(s) = s. Throughout
this paper, we let

x[i] := riφγi([x
[i−1]]∆), i = 1, 2, with x[0] = x. (1.2)

It is easy to see that all solutions of Eq. (1.1) can be extended to ∞ if either g (t, s) ≤ t− τ

for some τ > 0 and all t ∈ T and s ∈ [a, b] or T is a discrete time scale and g (t, s) ≤ t for all
t ∈ T and s ∈ [a, b]. However, Eq. (1.1) may have both extendable solutions and nonextendable
solutions in general. For the asymptotic and oscillation purposes, we are only interested in
the solutions that are extendable to ∞. Thus, we use the following definition of solutions.

Definition 1.1. By a solution of Eq. (1.1) we mean a nontrivial real-valued function
x ∈ C1

rd[Tx, ∞)T for some Tx ≥ t0 such that x[1], x[2] ∈ C1
rd[Tx, ∞)T, and x(t) satisfies Eq. (1.1)

on [Tx, ∞)T, where Crd is the space of right-dense continuous functions, and C1
rd is the space

of functions whose ∆-derivatives are right-dense on [Tx, ∞)T.

In the last few years, there has been an increasing interest in obtaining sufficient conditions
for the oscillation/nonoscillation of solutions of different classes of dynamic equations, we
refer the reader to the papers [1, 2, 6, 7, 9, 15, 17, 19, 20, 21, 24, 26, 28] and the references cited
therein. Regarding third order dynamic equations, Erbe, Peterson, and Saker [10, 11] and
Yu and Wang [29] obtained sufficient conditions for oscillation for the third order dynamic
equations (

r2(t)
(

r1(t)x∆(t)
)∆
)∆

+ p(t)x(t) = 0,

(
r2(t)

[(
r1(t)x∆(t)

)∆
]γ)∆

+ p(t)xγ(t) = 0,

and (
r2(t)

[(
r1(t)

(
x∆(t)

)α1
)∆
]α2
)∆

+ p(t)x(t) = 0;

where γ ≥ 1 is the quotient of odd positive integers and r1, r2, p ∈ Crd(T) are positive. Hassan
[16] and Erbe, Hassan, and Peterson [12] extended their work to the dynamic equation with
delay (

r2(t)
[(

r1(t)x∆(t)
)∆
]γ)∆

+ p(t)xγ (h(t)) = 0

for the case that γ ≥ 1 and γ > 0, respectively, where h(t) is a monotone delay function on T.
A number of sufficient conditions for oscillation were obtained for the cases when∫ ∞

0

∆t

r1/γ
2 (t)

= ∞ and
∫ ∞

0

∆t
r1(t)

= ∞

and ∫ ∞

0

∆t

r1/γ
2 (t)

< ∞ and
∫ ∞

0

∆t
r1(t)

< ∞,
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respectively. Also, Han, Li, Sun, and Zhang [18] discussed the third order delay dynamic
equation (

r2(t)
(

r1(t)x∆(t)
)∆
)∆

+ p(t)x(g(t)) = 0,

where g(t) ≤ t and

r∆
1 (t) ≤ 0 and

∫ ∞

t0

g(t)p(t)∆t = ∞. (1.3)

Recently, Erbe, Hassan, and Peterson [13] extended these results to third-order dynamic equa-
tions of a more general form{

r2(t)
([

r1(t)
(

x∆(t)
)γ1
]∆
)γ2
}∆

+
n

∑
i=0

pi(t)(x(hi(t)))αi = 0, (1.4)

where certain restrictions on the delay terms were imposed.
In this paper, we study the asymptotic and oscillatory behavior of the third-order func-

tional dynamic equation (1.1) with γ-Laplacian and nonlinearities given by Riemann–Stieltjes
integrals for both the cases ∫ ∞

0
r
− 1

γi
i (t)∆t = ∞, i = 1, 2, (1.5)

and ∫ ∞

0
r
− 1

γi
i (t)∆t < ∞, i = 1, 2. (1.6)

The results improve and extend the oscillation criteria established in [8, 10, 11, 12, 13, 16, 18,
24, 25, 26].

2 Asymptotic behavior

In this section, we discuss the asymptotic behavior of the solutions of (1.1) when (1.5) and
(1.6) hold, respectively. The first theorem is under the assumption that (1.5) holds, the second
is under the assumption that (1.6) holds, and the last one is for the general case.

Theorem 2.1. Assume that (1.5) holds and

∫ ∞

0
r
− 1

γ1
1 (u)

{∫ ∞

u
r
− 1

γ2
2 (v)

[∫ ∞

v

∫ b

a
q(w, s)dζ(s)∆w

] 1
γ2

∆v

} 1
γ1

∆u = ∞. (2.1)

If Eq. (1.1) has eventually positive solution x(t), then[
x[2](t)

]∆
< 0 and

[
x[1](t)

]∆
> 0

eventually, and either x∆(t) is eventually positive or x(t) tends to zero eventually.

Proof. Since x(t) is eventually positive solution of Eq. (1.1), then there is a T ∈ [0, ∞)T such
that x(t) > 0 on [T, ∞)T and x(g(t, s)) > 0 on [T, ∞)T×[a, b]. From (1.1), we have that for
t ∈ [T, ∞)T, [

x[2](t)
]∆

= −
∫ b

a
q(t, s) [x(g(t, s))]α(s) dζ(s) < 0. (2.2)
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Then x[2](t) is strictly decreasing on [T, ∞)T. This implies that
[

x[1](t)
]∆

and x∆(t) are even-
tually of one sign.

(I) We show that
[
x[1](t)

]∆ is eventually positive. Otherwise, it is eventually negative. We
consider the following two cases:

(a) x∆(t) < 0 and
[
x[1](t)

]∆
< 0 eventually. In this case, there exists T1 ∈ [T, ∞)T such that

x[1](t) < 0 and
[

x[1](t)
]∆

< 0 for t ≥ T1.

Then

x(t) = x(T1) +
∫ t

T1

φ−1
γ1

[
x[1](u)

]
r
− 1

γ1
1 (u)∆u

< x(T1) + φ−1
γ1

[
x[1](T1)

] ∫ t

T1

r
− 1

γ1
1 (u)∆u.

By (1.5), we have limt→∞ x(t) = −∞, which contradicts the fact that x(t) is a positive solution
of Eq. (1.1).

(b) x∆(t) > 0 and
[
x[1](t)

]∆
< 0 eventually. In this case, there exists T1 ∈ [T, ∞)T such that

x[1](t) > 0 and
[

x[1](t)
]∆

< 0 for t ≥ T1.

Since x[2](t) is strictly decreasing on [T1, ∞)T, we get

x[1](t)− x[1](T1) =
∫ t

T1

φ−1
γ2

[
x[2](u)

]
r
− 1

γ2
2 (u)∆u

< φ−1
γ2

[
x[2](T1)

] ∫ t

T1

r
− 1

γ2
2 (u)∆u.

By (1.5), we have limt→∞ x[1](t) = −∞, which contradicts that x[1](t) > 0 for t ≥ T1.

(II) We then show that if x∆(t) is not eventually positive, then x(t) tends to zero eventually.
In this case, x∆(t) < 0 eventually. Hence

lim
t→∞

x(t) = l1 ≥ 0 and lim
t→∞

x[1](t) = l2 ≤ 0.

Assume l1 > 0. Then for sufficiently large T2 ∈ [T, ∞)T, we have x(g(t, s)) ≥ l1 for t ≥ T2 and
s ∈ [a, b]. It follows that

[x(g(t, s))]α(s) ≥ l := min
s∈[a,b]

{
lα(s)
1

}
for t ∈ [T2, ∞)T and s ∈ [a, b].

Integrating (1.1) from t to τ ∈ [t, ∞)T, we get

−x[2](τ) + x[2](t) >
∫ τ

t

∫ b

a
q(w, s) [x(g(w, s))]α(s) dζ(s)∆w.

By Part (I) and (1.2) we see that x[2](τ) > 0. Hence by taking limits as τ → ∞ we have

x[2](t) >
∫ ∞

t

∫ b

a
q(w, s) [x(g(w, s))]α(s) dζ(s)∆w

≥ l
∫ ∞

t

∫ b

a
q(w, s) dζ(s)∆w.
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If
∫ ∞

t

∫ b
a q(w, s) dζ(s)∆w = ∞, we have reached a contradiction. Otherwise,[

x[1](t)
]∆

> l
1

γ2 r
− 1

γ2
2 (t)

[∫ ∞

t

∫ b

a
q(w, s)dζ(s)∆w

]1/γ2

.

Again, integrating this inequality from t to ∞ and noting that x[1](t) ≤ 0 eventually, we get

−x[1](t) > l
1

γ2

∫ ∞

t
r
− 1

γ2
2 (v)

[∫ ∞

v

∫ b

a
q(w, s)dζ(s)∆w

] 1
γ2

∆v,

which yields

−x∆(t) > Lr
− 1

γ1
1 (t)

{∫ ∞

t
r
− 1

γ2
2 (v)

[∫ ∞

v

∫ b

a
q(w, s)dζ(s)∆w

] 1
γ2

∆v

} 1
γ1

,

where L := l
1

γ1γ2 > 0. Finally, integrating the last inequality from T2 to t, we get

−x(t) + x (T2) > L
∫ t

T2

r
− 1

γ1
1 (u)

{∫ ∞

u
r
− 1

γ2
2 (v)

[∫ ∞

v

∫ b

a
q(w, s) dζ(s)∆w

] 1
γ2

∆v

} 1
γ1

∆u.

Hence by (2.1), we have limt→∞ x(t) = −∞, which contradicts the fact that x(t) is a positive
solution of Eq. (1.1). This shows that limt→∞ x(t) = 0 and hence completes the proof.

Remark 2.2. The conclusion of Theorem 2.1 remains intact if assumption (2.1) is replaced by
the condition ∫ ∞

0

∫ b

a
q(w, s) dζ(s)∆w = ∞

or ∫ ∞

0

∫ b

a
q(w, s) dζ(s)∆w < ∞ and

∫ ∞

0
r
− 1

γ2
2 (v)

[∫ ∞

v

∫ b

a
q(w, s) dζ(s)∆w

] 1
γ2

∆v = ∞.

Now we consider the case when (1.6) holds. We will use the following notations:

λi(t) :=
∫ ∞

t
r
− 1

γi
i (u)∆u and Ri(t, t0) :=

∫ t

t0

r
− 1

γi
i (u)∆u, i = 1, 2;

and

Λ(t, t0) := λ
1

γ1
2 (t)R1(t, t0).

Theorem 2.3. Assume that (2.1) holds, and for any t0 ∈ [0, ∞)T

∫ ∞

t0

r
− 1

γ1
1 (u)

{ ∫ u

t0

r
− 1

γ2
2 (v)

[∫ v

t0

∫ b

a
q (w, s) [λ1(g(w, s))]α(s) dζ(s)∆w

] 1
γ2

∆v

} 1
γ1

∆u = ∞ (2.3)

and ∫ ∞

t0

r
− 1

γ2
2 (v)

[∫ v

t0

∫ b

a
q(w, s) [Λ (g(w, s), t0)]

α(s) dζ(s)∆w
] 1

γ2
∆v = ∞. (2.4)

If Eq. (1.1) has eventually positive solution x(t), then[
x[2](t)

]∆
< 0 and

[
x[1](t)

]∆
> 0

eventually, and either x∆(t) is eventually positive or x(t) tends to zero eventually.
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Proof. Since x(t) is eventually positive solution of Eq. (1.1), then there is a T ∈ [0, ∞)T such that
x(t) > 0 on [T, ∞)T and x(g(t, s)) > 0 on [T, ∞)T×[a, b]. By (2.2), x[2](t) is strictly decreasing
on [T, ∞)T. This implies that

[
x[1](t)

]∆ and x∆(t) are eventually of one sign.

(I) We show that
[
x[1](t)

]∆ is eventually positive. Otherwise, it is eventually negative. We
consider the following two cases:

(a) x∆(t) < 0 and
[
x[1](t)

]∆
< 0 eventually. In this case, there exists T1 ≥ T such that

x∆(t) < 0 and
[

x[1](t)
]∆

< 0 for t ≥ T1.

Let T2 ∈ [T1, ∞)T such that g(t, s) ≥ T1 for t ≥ T2 and s ∈ [a, b]. Then for t ≥ T2,

x(g(t, s)) > −
∫ ∞

g(t,s)
φ−1

γ1

[
x[1](u)

]
r
− 1

γ1
1 (u)∆u

> −φ−1
γ1

[
x[1](g(t, s))

] ∫ ∞

g(t,s)
r
− 1

γ1
1 (u)∆u

> −φ−1
γ1

[
x[1](T1)

] ∫ ∞

g(t,s)
r
− 1

γ1
1 (u)∆u = L1λ1(g(t, s)),

where L1 := −φ−1
γ1

[
x[1](T1)

]
> 0, and hence

[x(g(t, s))]α(s) > L [λ1(g(t, s))]α(s) for t ≥ T2 and s ∈ [a, b], (2.5)

where L := mins∈[a,b]
{

Lα(s)
1

}
> 0. From (1.1) and (2.5) we find that

[
x[2](t)

]∆
< −L

∫ b

a
q(t, s) [λ1(g(t, s))]α(s) dζ(s).

Integrating this last inequality from T2 to t, we see that

x[2](t) < x[2](t)− x[2](T2) < −L
∫ t

T2

∫ b

a
q(w, s) [λ1 (g(w, s))]α(s) dζ(s)∆w,

which implies that

[
x[1](t)

]∆
< −r

− 1
γ2

2 (t)
[

L
∫ t

T2

∫ b

a
q(w, s) [λ1 (g(w, s))]α(s) dζ(s)∆w

] 1
γ2

.

Again, integrating the above inequality from T2 to t, we get

x[1](t) < x[1](t)− x[1](T2) < −
∫ t

T2

r
− 1

γ2
2 (v)

[
L
∫ v

T2

∫ b

a
q(w, s) [λ1 (g(w, s))]α(s) dζ(s)∆w

] 1
γ2

∆v,

which yields

x(t)− x(T2) <

−
∫ t

T2

r
− 1

γ1
1 (u)

{ ∫ u

T2

r
− 1

γ2
2 (v)

[
L
∫ v

T2

∫ b

a
q(w, s) [λ1 (g(w, s))]α(s) dζ(s)∆w

] 1
γ2
∆v

} 1
γ1

∆u.
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From (2.3), we have limt→∞ x(t) = −∞, which contradicts the fact that x is a positive solution
of Eq. (1.1).
(b) x∆(t) > 0 and

[
x[1](t)

]∆
< 0 eventually. In this case, there exists T1 ≥ T such that

x∆(t) > 0 and
[

x[1](t)
]∆

< 0 for t ≥ T1.

Again, we let T2 ∈ [T1, ∞)T such that g(t, s) ≥ T1 for t ≥ T2 and s ∈ [a, b]. Then for t ≥ T2,

x(g(t, s)) > x(g(t, s))− x(T1)

=
∫ g(t,s)

T1

φ−1
γ1

[
x[1](u)

]
r
− 1

γ1
1 (u)∆u

> φ−1
γ1

[
x[1](g(t, s))

] ∫ g(t,s)

T1

r
− 1

γ1
1 (u)∆u

= φ−1
γ1

[
x[1](g(t, s))

]
R1(g(t, s), T1) (2.6)

and

x[1](g(t, s)) > −
∫ ∞

g(t,s)
φ−1

γ2

[
x[2](u)

]
r
− 1

γ2
2 (u)∆u

> −φ−1
γ2

[
x[2](g(t, s))

] ∫ ∞

g(t,s)
r
− 1

γ2
2 (u)∆u

> −φ−1
γ2

[
x[2](T1)

] ∫ ∞

g(t,s)
r
− 1

γ2
2 (u)∆u = L2λ2(g(t, s)), (2.7)

where L2 := −φ−1
γ2

[
x[2](T1)

]
> 0. Substituting (2.7) into (2.6), we get that for t ≥ T2 and

s ∈ [a, b]

x(g(t, s)) > L
1

γ1
2 Λ(g(t, s), T1),

and hence

[x(g(t, s))]α(s) > L [Λ(g(t, s), T1)]
α(s) , (2.8)

where L := mins∈[a,b]
{

Lα(s)/γ1
2

}
> 0. By (1.1) and (2.8),

[
x[2](t)

]∆
< −L

∫ b

a
q(t, s) [Λ(g(t, s), T1)]

α(s) dζ(s).

Integrating both sides from T2 to t, we have

x[2](t) < x[2](t)− x[2](T2)

< −L
∫ t

T2

∫ b

a
q(w, s) [Λ(g(w, s), T1)]

α(s) dζ(s)∆w,

which implies that

[
x[1](t)

]∆
< −r

− 1
γ2

2 (t)
[

L
∫ t

T2

∫ b

a
q(w, s) [Λ(g(w, s), T1)]

α(s) dζ(s)∆w
] 1

γ2
.
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Again, integrating both sides from T2 to t, we get

−x[1](T2) < x[1](t)− x[1](T2)

< −
∫ t

T2

r
− 1

γ2
2 (v)

[
L
∫ v

T2

∫ b

a
q(w, s) [Λ(g(w, s), T1)]

α(s) dζ(s)∆w
] 1

γ2
∆v

< −
∫ t

T2

r
− 1

γ2
2 (v)

[
L
∫ v

T2

∫ b

a
q(w, s) [Λ(g(w, s), T2)]

α(s) dζ(s)∆w
] 1

γ2
∆v,

which contradicts (2.4).

(II) With essentially the same proof as in Part (II) of the proof of Theorem 2.1, we can
show that if x∆(t) is not eventually positive, then x(t) tends to zero eventually. We omit the
details.

Theorem 2.4. Let x(t) be a solution of Eq. (1.1) such that

x(t) > 0, x(g(t, s)) > 0, x∆(t) > 0, and
[

x[1](t)
]∆

> 0 (2.9)

for t ∈ [T, ∞)T and s ∈ [a, b] with T ∈ [0, ∞)T. Then

x∆(t) > φ−1
γ

[
x[2](t)

] [R2(t, T)
r1(t)

] 1
γ1

;

x(t) > φ−1
γ

[
x[2](t)

] ∫ t

T

[
R2(u, T)

r1(u)

] 1
γ1

∆u;

and

x(t) > R(t, T)[x[1](t)]
1

γ1 and
[

x(t)
R(t, T)

]∆

< 0 for t ∈ (T, ∞)T.

where γ := γ1γ2 and

R(t, T) :=
∫ t

T

[
R2(u, T)

R2(t, T)r1(u)

] 1
γ1

∆u.

Proof. By (2.2), x[2](t) is strictly decreasing on [T, ∞)T. Then for t ∈ [T, ∞)T,

x[1](t) > x[1](t)− x[1](T) =
∫ t

T
φ−1

γ2

[
x[2](u)

]
r
− 1

γ2
2 (u)∆u

≥ φ−1
γ2

[
x[2](t)

] ∫ t

T
r
− 1

γ2
2 (u)∆u = φ−1

γ2

[
x[2](t)

]
R2(t, T), (2.10)

which implies that

x∆(t) > φ−1
γ

[
x[2](t)

] [R2(t, T)
r1(t)

] 1
γ1

,

where γ = γ1γ2. In the same way, we have

x(t) > φ−1
γ

[
x[2](t)

] ∫ t

T

[
R2(u, T)

r1(u)

] 1
γ1

∆u.

We note that[
x[1](t)

R2(t, T)

]∆

=
r−1/γ2

2 (t)
R2(t, T)R2(σ(t), T)

[
φ−1

γ2

[
x[2](t)

]
R2(t, T)− x[1](t)

]
,
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so by (2.10) we have [
x[1](t)

R2(t, T)

]∆

< 0 for t ∈ (T, ∞)T.

Then

x(t) > x(t)− x(T) =
∫ t

T
φ−1

γ1

[
x[1](u)

]
r
− 1

γ1
1 (u)∆u

=
∫ t

T
φ−1

γ1

[
x[1](u)

R2(u, T)

] [
R2(u, T)

r1(u)

] 1
γ1

∆u

≥ φ−1
γ1

[
x[1](t)

R2(t, T)

] ∫ t

T

[
R2(u, T)

r1(u)

] 1
γ1

∆u

= φ−1
γ1

[
x[1](t)

]
R(t, T),

which yields [
x(t)

R(t, T)

]∆

< 0 for t ∈ (T, ∞)T.

3 Oscillation criteria

In this section, by using the results in Section 2, we study the oscillatory behavior of the
solutions of Eq. (1.1) under the assumptions (1.5) and (1.6), respectively. First, we establish
oscillation criteria for Eq. (1.1) under the assumption that (1.5) holds.

Theorem 3.1. Assume that (1.5) and (2.1) hold. Suppose that for any t0 ∈ [0, ∞)T,

lim sup
t→∞

∫ t

t0

∫ b

a
q(u, s) [R1(g(u, s), t0)]

α(s) dζ(s)∆u = ∞. (3.1)

Then every solution of Eq. (1.1) is either oscillatory or tends to zero eventually.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of generality, as-
sume there is a T ∈ [0, ∞)T such that x(t) > 0 on [T, ∞)T and x(g(t, s)) > 0 on [T, ∞)T×[a, b].
By Theorem 2.1, [

x[2](t)
]∆

< 0 and
[

x[1](t)
]∆

> 0

eventually and either x∆(t) is eventually positive or x(t) tends to zero eventually. We suppose
that [

x[2](t)
]∆

< 0,
[

x[1](t)
]∆

> 0, and x∆(t) > 0

eventually. Then there exists T1 ∈ [T, ∞)T such that[
x[2](t)

]∆
< 0,

[
x[1](t)

]∆
> 0, and x∆(t) > 0 for t ≥ T1.

Since
[
x[1](t)

]∆
> 0 on [T1, ∞)T, we have

x[1](t) > x[1](T1) =: C > 0.
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Thus for t ≥ T1,

x(t) > x(t)− x(T1) > C1/γ1

∫ t

T1

r
− 1

γ1
1 (u)∆u = C1/γ1 R1(t, T1).

Choose T2 ∈ [T1, ∞)T such that g(t, s) > T1 for t ≥ T2 and s ∈ [a, b]. Then for t ≥ T2 and
s ∈ [a, b],

[x(g(t, s))]α(s) > C1 [R1(g(t, s), T1)]
α(s) , (3.2)

where C1 := mins∈[a,b]
{ (

C1/γ1
)α(s) }

> 0. It follows from (1.1) and (3.2) that

−
[

x[2](t)
]∆

> C1

∫ b

a
q(t, s) [R1(g(t, s), T1)]

α(s) dζ(s).

Integrating both sides of the last inequality from T2 to t, we have

x[2](T2) > −x[2](t) + x[2](T2)

> C1

∫ t

T2

∫ b

a
q(u, s) [R1(g(u, s), T1)]

α(s) dζ(s)∆u

≥ C1

∫ t

T2

∫ b

a
q(u, s) [R1(g(u, s), T2)]

α(s) dζ(s)∆u.

which contradicts (3.1).

Theorem 3.2. Assume that (1.5) and (2.1) hold. Suppose that for any t0 ∈ [0, ∞)T,

lim sup
t→∞

∫ t

t0

∫ b

a
q(u, s)dζ(s)∆u = ∞. (3.3)

Then every solution of Eq. (1.1) is either oscillatory or tends to zero eventually.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of generality, as-
sume there is a T ∈ [0, ∞)T such that x(t) > 0 on [T, ∞)T and x(g(t, s)) > 0 on [T, ∞)T×[a, b].
By Theorem 2.1, [

x[2](t)
]∆

< 0 and
[

x[1](t)
]∆

> 0

eventually and either x∆(t) is eventually positive or x(t) tends to zero eventually. We suppose
that [

x[2](t)
]∆

< 0,
[

x[1](t)
]∆

> 0, and x∆(t) > 0

eventually. Then there exists T1 ∈ [T, ∞)T such that[
x[2](t)

]∆
< 0,

[
x[1](t)

]∆
> 0, and x∆(t) > 0 for t ≥ T1.

Since x∆(t) > 0 on [T1, ∞)T, we have

x(t) > x(T1) =: c > 0.

Choose T2 ∈ [T1, ∞)T such that g(t, s) > T1 for t ≥ T2 and s ∈ [a, b]. Then for t ≥ T2 and
s ∈ [a, b],

[x(g(t, s))]α(s) > c1, (3.4)

where c1 := mins∈[a,b]
{

cα(s)} > 0. The rest of the proof is similar to that of Theorem 3.1 and
hence is omitted.
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In the following, we let γ := γ1γ2 and denote by Lζ(a, b) the set of Riemann–Stieltjes
integrable functions on [a, b] with respect to ζ. Let c ∈ [a, b] such that α(c) = γ. We further
assume that α−1 ∈ Lζ(a, b) and

0 < α(a) < γ < α(b),
∫ c

a
dζ(s) > 0 and

∫ b

c
dζ(s) > 0.

To state our main results, we begin with two technical lemmas. The first one is cited from [17,
Lemma 1].

Lemma 3.3. Let

m := γ

(∫ b

c
dζ(s)

)−1∫ b

c
α−1(s)dζ(s)

and

n := γ

(∫ c

a
dζ(s)

)−1∫ c

a
α−1(s)dζ(s).

Then there exists η ∈ Lζ(a, b) such that η(s) > 0 on [a, b], and

∫ b

a
α(s)η(s)dζ(s) = γ and

∫ b

a
η(s)dζ(s) = 1. (3.5)

We note from the definition of m and n that 0 < m < 1 < n. The next lemma is a
generalized arithmetic–geometric mean inequality established in [27].

Lemma 3.4. Let u ∈ C[a, b] and η ∈ Lζ(a, b) satisfying u ≥ 0, η > 0 on [a, b] and
∫ b

a η(s)dζ(s) = 1.
Then ∫ b

a
η(s)u(s)dζ(s) ≥ exp

(∫ b

a
η(s) ln [u(s)] dζ(s)

)
,

where we use the convention that ln 0 = −∞ and e−∞ = 0.

In the following, we denote k+ := max{k, 0} for any k ∈ R. The theorem below is derived
from Theorem 2.4.

Theorem 3.5. Assume that (1.5) and (2.1) hold. Furthermore, suppose that there exists a positive
function ϕ ∈ C1

rd[0, ∞)T and that, for all sufficiently large t0 ∈ [0, ∞)T, there is a t1 > t0 such that
g(t, s) > t0 for t ≥ t1 and s ∈ [a, b], and

lim sup
t→∞

∫ t

t1

[
ϕ(u)Q1(u, t0)−

((ϕ∆(u))+)γ+1

(γ + 1)γ+1ϕγ(u)

[
r1(u)

R2(u, t0)

]γ2
]

∆u = ∞, (3.6)

where

Q1(u, t0) := exp
(∫ b

a
η(s) ln

[
q̌(u, s, t0)

η(s)

]
dζ(s)

)
with q̌(u, s, t0) := q(u, s)G(u, s, t0) and

G(u, s, t0) :=


1, g(u, s) ≥ u,[

R(g(u, s), t0)

R(u, t0)

]α(s)

, g(u, s) ≤ u.
(3.7)

Then every solution of Eq. (1.1) is either oscillatory or tends to zero eventually.
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Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of generality, as-
sume there is a T ∈ [0, ∞)T such that x(t) > 0 on [T, ∞)T and x(g(t, s)) > 0 on [T, ∞)T×[a, b].
By Theorem 2.1, we have [

x[2](t)
]∆

< 0 and
[

x[1](t)
]∆

> 0

eventually and either x∆(t) is eventually positive or x(t) tends to zero. We suppose that[
x[2](t)

]∆
< 0,

[
x[1](t)

]∆
> 0, and x∆(t) > 0

eventually. Then there exists T1 ≥ T such that[
x[2](t)

]∆
< 0,

[
x[1](t)

]∆
> 0, and x∆(t) > 0 for t ≥ T1.

Consider the Riccati substitution

w(t) = ϕ(t)
x[2](t)
xγ(t)

,

where γ = γ1γ2. By the product rule and the quotient rule, we get

w∆(t) =
ϕ(t)
xγ(t)

[
x[2](t)

]∆
+

(
ϕ(t)
xγ(t)

)∆

x[2] (σ(t))

= ϕ(t)

[
x[2](t)

]∆

xγ(t)
+

(
ϕ∆(t)

xγ(σ(t))
− ϕ(t)(xγ(t))∆

xγ(t)xγ(σ(t))

)
x[2] (σ(t)) . (3.8)

From (1.1) and the definition of w(t) we have for t ≥ T1,

w∆(t) = − ϕ(t)
∫ b

a
q(t, s)

[x(g(t, s))]α(s)

xγ(t)
dζ(s)

+
ϕ∆(t)

ϕ(σ(t))
w(σ(t))− ϕ(t)(xγ(t))∆

ϕ (σ(t)) xγ(t)
w(σ(t)).

Let t ∈ [T1, ∞)T and s ∈ [a, b] be fixed. If g(t, s) ≥ t, then x(g(t, s)) ≥ x(t) by the fact that
x(t) is strictly increasing. Now we consider the case when g(t, s) ≤ t. In view of Theorem
2.4, x(t)

R(t,T1)
is decreasing on (T1, ∞)T, we see that there exists T2 ≥ T1 such that g(t, s) > T1 for

t ≥ T2 and s ∈ [a, b], and so

x(g(t, s)) ≥ R(g(t, s), T1)

R(t, T1)
x(t) for t ≥ T2.

In both cases, from the definition of q̌(t, s, T1) we have that for t ≥ T2 and s ∈ [a, b],

w∆(t) < − ϕ(t)
∫ b

a
q̌(t, s, T1)xα(s)−γ(t)dζ(s) +

ϕ∆(t)
ϕ(σ(t))

w (σ(t))

− ϕ(t)(xγ(t))∆

ϕ(σ(t))xγ(t)
w(σ(t)). (3.9)

We let η ∈ Lζ(a, b) be defined as in Lemma 3.3. Then η satisfies (3.5). It follows that∫ b

a
η(s) [α(s)− γ] dζ = 0.
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From Lemma 3.4 we get∫ b

a
q̌(t, s, T1) [x(t)]

α(s)−γ dζ(s)

=
∫ b

a
η(s)

q̌(t, s, T1)

η(s)
[x(t)]α(s)−γ dζ(s)

≥ exp
(∫ b

a
η(s) ln

(
q̌(t, s, T1)

η(s)
[x(t)]α(s)−γ

)
dζ(s)

)
= exp

(∫ b

a
η(s) ln

[
q̌(t, s, T1)

η(s)

]
dζ(s) + ln (x(t))

∫ b

a
η(s) [α(s)− γ] dζ(s)

)
= exp

(∫ b

a
η(s) ln

[
q̌(t, s, T1)

η(s)

]
dζ(s)

)
.

This together with (3.9) shows that

w∆(t) < −ϕ(t)Q1(t, T1) +
ϕ∆(t)

ϕ (σ(t))
w (σ(t))− ϕ(t)(xγ(t))∆

ϕ (σ(t)) xγ(t)
w (σ(t)) .

Then by the Pötzsche chain rule we obtain that

(xγ(t))∆ = γ

(∫ 1

0

[
x(t) + hµ(t)x∆(t)

]γ−1
dh
)

x∆(t)

= γ

(∫ 1

0
[(1− h) x(t) + hx(σ(t))]γ−1 dh

)
x∆(t)

>

{
γ(x (σ(t)))γ−1x∆(t), 0 < γ ≤ 1,

γxγ−1(t)x∆(t), γ ≥ 1.

If 0 < γ ≤ 1, then

w∆(t) < −ϕ(t)Q1(t, T1) +
ϕ∆(t)

ϕ (σ(t))
w(σ(t))− γϕ(t)w(σ(t))

ϕ(σ(t))
x∆(t)

x(σ(t))

(
x(σ(t))

x(t)

)γ

;

and if γ ≥ 1, then

w∆(t) ≤ −ϕ(t)Q1(t, T1) +
ϕ∆(t)

ϕ (σ(t))
w (σ(t))− γϕ(t)w (σ(t))

ϕ (σ(t))
x∆(t)

x (σ(t))
x (σ(t))

x(t)
.

Note that as x(t) is strictly increasing on [T2, ∞)T, we see that for γ > 0,

w∆(t) ≤ −ϕ(t)Q1(t, T1) +
ϕ∆(t)

ϕ (σ(t))
w (σ(t))− γϕ(t)w (σ(t))

ϕ (σ(t))
x∆(t)

x (σ(t))
. (3.10)

Since x[2](t) is strictly decreasing on [T1, ∞)T,

x[1](t) > x[1](t)− x[1](T1) =
∫ t

T1

φ−1
γ2

[
x[2](u)

]
r
− 1

γ2
2 (u)∆u

> φ−1
γ2

[
x[2](t)

] ∫ t

T1

r
− 1

γ2
2 (u)∆u > φ−1

γ2

[
x[2] (σ(t))

]
R2(t, T1). (3.11)

From (3.10) and (3.11) we obtain for t ≥ T2,

w∆(t) ≤ −ϕ(t)Q1(t, T1) +
(ϕ∆(t))+
ϕ (σ(t))

w (σ(t))− γϕ(t)
ϕβ (σ(t))

[
R2(t, T1)

r1(t)

]1/γ1

wβ (σ(t)) , (3.12)
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where β := γ+1
γ . Define

Xβ :=
γϕ(t)

ϕβ (σ(t))

[
R2(t, T1)

r1(t)

]1/γ1

wβ (σ(t))

and

Yβ−1 :=
(ϕ∆(t))+

β (γϕ(t))1/β

[
r1(t)

R2(t, T1)

]γ2/(γ+1)

.

Then, using the inequality (see [14])

βXYβ−1 − Xβ ≤ (β− 1)Yβ, (3.13)

we get that

(ϕ∆(t))+
ϕ (σ(t))

w (σ(t))− γϕ(t)
ϕβ (σ(t))

[
R2(t, T1)

r1(t)

]1/γ1

wβ (σ(t))

≤ ((ϕ∆(t))+)γ+1

(γ + 1)γ+1ϕγ(t)

[
r1(t)

R2(t, T1)

]γ2

.

From this and (3.12) we have

w∆(t) ≤ −ϕ(t)Q1(t, T1) +
((ϕ∆(t))+)γ+1

(γ + 1)γ+1ϕγ(t)

[
r1(t)

R2(t, T1)

]γ2

.

Integrating both sides from T2 to t we get

∫ t

T2

[
ϕ(u)Q1(u, T1)−

((ϕ∆(u))+)γ+1

(γ + 1)γ+1ϕγ(u)

[
r1(u)

R2(u, T1)

]γ2
]

∆u

≤ w(T2)− w(t) ≤ w(T2),

which leads to a contradiction to (3.6).

Theorem 3.6. Assume that (1.5) and (2.1) hold. Furthermore, suppose that there exists a positive
function ρ ∈ C1

rd[0, ∞)T and that for all sufficiently large t0 ∈ [0, ∞)T, there is a t1 > t0 such that
g(t, s) > t0 for t ≥ t1 and s ∈ [a, b], and

lim sup
t→∞

∫ t

t1

[
ρ(u)Q2(u, t0)−

((ρ∆(u))+)γ2+1r2(u)
(γ2 + 1)γ2+1ργ2(u)

]
∆u = ∞, (3.14)

where

Q2(u, t0) := exp
(∫ b

a
η(s) ln

[
q̄(u, s, t0)

η(s)

]
dζ(s)

)
with q̄(u, s, t0) := Rγ(u, t0)G(u, s, t0)q(u, s) and G(u, s, t0) is given by (3.7). Then every solution of
Eq. (1.1) is either oscillatory or tends to zero eventually.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of generality, as-
sume there is a T ∈ [0, ∞)T such that x(t) > 0 on [T, ∞)T and x(g(t, s)) > 0 on [T, ∞)T×[a, b].
By Theorem 2.1, we have [

x[2](t)
]∆

< 0 and
[

x[1](t)
]∆

> 0
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eventually and either x∆(t) is eventually positive or x(t) tends to zero eventually. We let[
x[2](t)

]∆
< 0,

[
x[1](t)

]∆
> 0, and x∆(t) > 0

eventually. Then there exists T1 ≥ T such that[
x[2](t)

]∆
< 0,

[
x[1](t)

]∆
> 0, and x∆(t) > 0 for t ≥ T1.

Let

z(t) := ρ(t)
x[2](t)

(x[1](t))γ2
.

By the product rule and the quotient rule, we get

z∆(t) =
ρ(t)

(x[1](t))γ2
(x[2](t))∆ +

(
ρ(t)

(x[1](t))γ2

)∆

x[2] (σ(t))

= ρ(t)
(x[2](t))∆

(x[1](t))γ2
+

(
ρ∆(t)

(x[1] (σ(t)))γ2
− ρ(t)((x[1](t))γ2)∆

(x[1](t))γ2(x[1] (σ(t)))γ2

)
x[2] (σ(t)) .

From (1.1) and the definition of z(t), we see that for t ≥ T1,

z∆(t) = − ρ(t)
∫ b

a
q(t, s)

[x(g(t, s))]α(s)

(x[1](t))γ2
dζ(s) +

ρ∆(t)
ρ (σ(t))

z (σ(t))

− ρ(t)z (σ(t))
ρ (σ(t))

((x[1](t))γ2)∆

(x[1](t))γ2
.

Hence
[x(g(t, s))]α(s)

(x[1](t))γ2
=

[x(g(t, s))]α(s)

xγ(t)
xγ(t)

(x[1](t))γ2
.

As shown in the proof of Theorem 3.5, there exists T2 ≥ T1 such that g(t, s) > T1 for t ≥ T2

and s ∈ [a, b], and so
[x(g(t, s))]α(s) > G(t, s, T1)xα(s)(t),

and by Theorem 2.4 we get
xγ(t) > Rγ(t, T1)(x[1](t))γ2 ,

where γ = γ1γ2. Then

[x(g(t, s))]α(s)

(x[1](t))γ2
> Rγ(t, T1)G(t, s, T1) xα(s)−γ(t).

It follows that for t ≥ T2,

z∆(t) < − ρ(t)
∫ b

a
q̄(t, s, T1)xα(s)−γ(t)dζ(s) +

ρ∆(t)
ρ (σ(t))

z (σ(t))

− ρ(t)z (σ(t))
ρ (σ(t))

((x[1](t))γ2)∆

(x[1](t))γ2
.

Also, as shown in the proof of Theorem 3.5,

z∆(t) < −ρ(t)Q2(t, T1) +
ρ∆(t)

ρ (σ(t))
z (σ(t))− ρ(t)z (σ(t))

ρ (σ(t))
((x[1](t))γ2)∆

(x[1](t))γ2
.
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By the Pötzsche chain rule,

((x[1](t))γ2)∆ = γ2

∫ 1

0
[x[1](t) + hµ(t)(x[1](t))∆]γ2−1dh (x[1](t))∆

= γ2

∫ 1

0

[
(1− h) x[1](t) + hx[1] (σ(t))

]γ2−1
dh (x[1](t))∆

≥

γ2

[
x[1] (σ(t))

]γ2−1
(x[1](t))∆, 0 < γ2 ≤ 1

γ2

[
x[1](t)

]γ2−1
(x[1](t))∆, γ2 ≥ 1.

If 0 < γ2 ≤ 1, we have

z∆(t) < −ρ(t)Q2(t, T1) +
ρ∆(t)

ρ (σ(t))
z (σ(t))− γ2ρ(t)z (σ(t))

ρ (σ(t))
(x[1](t))∆

x[1] (σ(t))

(
x[1] (σ(t))

x[1](t)

)γ2

; (3.15)

and if γ2 ≥ 1, we have

z∆(t) < −ρ(t)Q2(t, T1) +
ρ∆(t)

ρ (σ(t))
z (σ(t))− γ2ρ(t)z (σ(t))

ρ (σ(t))
(x[1](t))∆

x[1] (σ(t))
x[1] (σ(t))

x[1](t)
. (3.16)

Since x[1] is strictly increasing and x[2] is strictly decreasing, we get that

x[1] (σ(t)) ≥ x[1](t) and (x[1](t))∆ ≥
(

x[2] (σ(t))
r2(t)

) 1
γ2

. (3.17)

Then from (3.15) and (3.16)

z∆(t) < −ρ(t)Q2(t, T1) +
(ρ∆(t))+
ρ (σ(t))

z (σ(t))− γ2ρ(t)

ρβ (σ(t)) r1/γ2
2 (t)

(z (σ(t)))β,

where β := γ2+1
γ2

. Define

Xβ :=
γ2ρ(t)

ρβ (σ(t)) r1/γ2
2 (t)

zβ (σ(t)) and Yβ−1 :=
(ρ∆(t))+r1/(γ2+1)

2 (t)

β (γ2ρ(t))1/β
.

Then from (3.13),

(ρ∆(t))+
ρ (σ(t))

z (σ(t))− γ2ρ(t)

ρβ (σ(t)) r1/γ2
2 (t)

(z (σ(t)))β ≤ ((ρ∆(t))+)γ2+1r2(t)
(γ2 + 1)γ2+1ργ2(t)

.

The rest of the proof is similar to that of Theorem 3.5 and hence is omitted.

The last theorem is under the assumption that
∫ ∞

t q(u, s)∆u < ∞ for any s ∈ [a, b].

Theorem 3.7. Let g(t, s) be a nondecreasing function with respect to t. Assume that (1.5) and (2.1)
hold and for any t0 ∈ [0, ∞)T,

lim sup
t→∞

Q3(t)

{∫ ĝ(t)

t0

[
R2(u, t0)

r1(u)

] 1
γ1

∆u

}γ

> 1, (3.18)



Asymptotic behavior of third order functional dynamic equations 17

where ĝ(t) := inf
s∈[a,b]

{t, g(t, s)} and

Q3(t) := exp
(∫ b

a
η(s) ln

[
q̂(t, s)
η(s)

]
dζ(s)

)
with q̂(t, s) :=

∫ ∞
t q(u, s)∆u. Then every solution of Eq. (1.1) is either oscillatory or tends to zero

eventually.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of generality, as-
sume there is a T ∈ [0, ∞)T such that x(t) > 0 on [T, ∞)T and x(g(t, s)) > 0 on [T, ∞)T×[a, b].
By Theorem 2.1, we have [

x[2](t)
]∆

< 0 and
[

x[1](t)
]∆

> 0

eventually and either x∆(t) is eventually positive or x(t) tends to zero eventually. We let[
x[2](t)

]∆
< 0,

[
x[1](t)

]∆
> 0, and x∆(t) > 0

eventually. Then there exists T1 ≥ T such that[
x[2](t)

]∆
< 0,

[
x[1](t)

]∆
> 0, and x∆(t) > 0 for t ≥ T1.

Integrating both sides of (1.1) from t to ∞ and then using the facts that x(t) is strictly increasing
and g(t, s) is a nondecreasing with respect to t, we obtain that

x[2](t) >
∫ b

a

∫ ∞

t
q(u, s) [x(g(u, s))]α(s) ∆u dζ(s)

≥
∫ b

a
q̂(t, s) [x(g(t, s))]α(s) dζ(s).

Note that x∆(t) > 0 on [T2, ∞)T and ĝ(t) ≤ g(t, s) on [T2, ∞)T × [a, b]. Then

x[2](t) ≥
∫ b

a
q̂(t, s) [x(g(t, s))]α(s) dζ(s)

>
∫ b

a
q̂(t, s) [x(ĝ(t))]α(s) dζ(s). (3.19)

By Theorem 2.4,

[x(t)]γ > x[2](t)

{∫ t

T1

[
R2(u, T1)

r1(u)

] 1
γ1

∆u

}γ

, (3.20)

where γ = γ1γ2. Choose T2 > T1 such that ĝ(t) > T1 for t ≥ T2. Then from (3.20) we see that
for t ≥ T2,

[x(ĝ(t))]γ > x[2] (ĝ(t))

{∫ ĝ(t)

T1

[
R2(u, T1)

r1(u)

] 1
γ1

∆u

}γ

≥ x[2](t)

{∫ ĝ(t)

T1

[
R2(u, T1)

r1(u)

] 1
γ1

∆u

}γ

,
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which implies that

x[2](t) < [x(ĝ(t))]γ
{∫ ĝ(t)

T1

[
R2(u, T1)

r1(u)

] 1
γ1

∆u

}−γ

for t ≥ T2. (3.21)

Using (3.21) in (3.19) we find for t ≥ T2,

[x(ĝ(t))]γ
{∫ ĝ(t)

T1

[
R2(u, T1)

r1(u)

] 1
γ1

∆u

}−γ

>
∫ b

a
q̂(t, s) [x(ĝ(t))]α(s) dζ(s).

Hence {∫ ĝ(t)

T1

[
R2(u, T1)

r1(u)

] 1
γ1

∆u

}−γ

>
∫ b

a
q̂(t, s) [x(ĝ(t))]α(s)−γ dζ(s). (3.22)

As shown in the proof of Theorem 3.5,

∫ b

a
q̂(t, s) [x(ĝ(t))]α(s)−γ dζ(s) ≥ exp

(∫ b

a
η(s) ln

[
q̂(t, s)
η(s)

]
dζ(s)

)
= Q3(t).

This together with (3.22) shows that

Q3(t)

{∫ ĝ(t)

T1

[
R2(u, T1)

r1(u)

] 1
γ1

∆u

}γ

< 1,

which implies that

lim sup
t→∞

Q3(t)

{∫ ĝ(t)

T1

[
R2(u, T1)

r1(u)

] 1
γ1

∆u

}γ

≤ 1.

This leads to a contradiction to (3.18).

At the end of this paper, we establish parallel results to Theorems 3.1–3.7 under the as-
sumption that (1.6) holds.

Theorem 3.8. Assume that (1.6), (2.1), (2.3), (2.4) and (3.1) hold. Then every solution of Eq. (1.1) is
either oscillatory or tends to zero eventually.

Theorem 3.9. Assume that (1.6), (2.1), (2.3), (2.4) and (3.3) hold. Then every solution of Eq. (1.1) is
either oscillatory or tends to zero eventually.

Theorem 3.10. Assume that (1.6), (2.1), (2.3), (2.4) and (3.6) hold. Then every solution of Eq. (1.1) is
either oscillatory or tends to zero eventually.

Theorem 3.11. Assume that (2.1), (2.3), (2.4) and (3.14) hold. Then every solution of Eq. (1.1) is
either oscillatory or tends to zero eventually.

Theorem 3.12. Assume that g(t, s) be a nondecreasing function with respect to t. Assume that (2.1),
(2.3), (2.4) and (3.18) hold. Then every solution of Eq. (1.1) is either oscillatory or tends to zero
eventually.
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Proof of Theorems 3.8–3.12. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without
loss of generality, assume there is a T ∈ [0, ∞)T such that x(t) > 0 on [T, ∞)T and x(g(t, s)) >
0 on [T, ∞)T×[a, b]. By Theorem 2.3,[

x[2](t)
]∆

< 0 and
[

x[1](t)
]∆

> 0

eventually and either x∆(t) is eventually positive or x(t) tends to zero eventually. We suppose
that [

x[2](t)
]∆

< 0,
[

x[1](t)
]∆

> 0, and x∆(t) > 0

eventually. The rest of the proof is similar to that of Theorems 3.1–3.7 respectively, and hence
is omitted.
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